Depletion of Kupffer cells attenuates systemic insulin resistance, inflammation and improves liver autophagy in high-fat diet fed mice.

نویسندگان

  • Tian-shu Zeng
  • Feng-min Liu
  • Jing Zhou
  • Shi-xiu Pan
  • Wen-fang Xia
  • Lu-lu Chen
چکیده

The objective of this study was to reveal the exact role of Kupffer cells in the diet-induced insulin resistance, inflammation and liver autophagy. C57BL/6j male mice were fed with either chow diet or high-fat diet (HFD) for 12 weeks. Meanwhile, HFD feeding mice received an intraperitoneal injection of either 0.2% GdCl3 solution (20mg/kg) twice a week to deplete Kupffer cells or natural saline (5mL/kg) as control. The mRNA expressions of Kupffer cells markers (CD68 and F4/80), insulin sensitivity, TNF-α concentration and NF-κB activation and parameters of autophagy were assessed. Results demonstrated that CD68 and F4/80 mRNA expressions in the liver were up-regulated in HFD fed animals, while significantly reduced after GdCl3 administration. HFD feeding led to insulin resistance and TNF-α level and activation of NF-κB in insulin-sensitive tissues (liver, adipose tissue and skeletal muscle) were significantly elevated. Interestingly, alterations above were reversed by varying degrees but significantly after Kupffer cells depletion. Furthermore, western blot showed hepatic LC3-II as well as phosphorylation of AMPK in liver and skeletal muscle were significantly lower in mice fed HFD, and these changes dramatically ameliorated by GdCl3 treating. In conclusion, selective depletion of Kupffer cells significantly attenuated diet-induced insulin resistance, inflammation and promoted liver autophagy. Strategies targeting Kupffer cells function or autophagic processes could be a promising approach to counteract diet induced obesity and related metabolic disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Momordica cymbalaria fruit extract attenuates high-fat diet-induced obesity and diabetes in C57BL/6 mice

Objective(s): The present study was aimed to evaluate the effect of methanolic fruit extract of Momordica cymbalaria (MeMC) against high-fat diet-induced obesity and diabetes in C57BL/7 mice.Materials and Methods: In the present study, six weeks old male C57BL/6 mice were divided into four groups. G-1 and G-2 served as lean control and HFD control, G-3 and G-4 received MeMC 25 and 50 mg/kg, BW ...

متن کامل

Endothelial NO/cGMP/VASP Signaling Attenuates Kupffer Cell Activation and Hepatic Insulin Resistance Induced by High-Fat Feeding

OBJECTIVE Proinflammatory activation of Kupffer cells is implicated in the effect of high-fat feeding to cause liver insulin resistance. We sought to determine whether reduced endothelial nitric oxide (NO) signaling contributes to the effect of high-fat feeding to increase hepatic inflammatory signaling and if so, whether this effect 1) involves activation of Kupffer cells and 2) is ameliorated...

متن کامل

Kupffer cell activation is a causal factor for hepatic insulin resistance.

Recruited adipose tissue macrophages contribute to chronic and low-grade inflammation causing insulin resistance in obesity. Similarly, we hypothesized here that Kupffer cells, the hepatic resident macrophages, play a pathogenic role in hepatic insulin resistance induced by a high-fat diet. Mice were fed a normal diet or high-fat diet for 3 days. Kupffer cell activation was evaluated by immunoh...

متن کامل

Evaluation of Diabetogenic Mechanism of High Fat Diet in Combination with Arsenic Exposure in Male Mice

Obesity is a main reason of type 2 diabetes and also chronic exposure to arsenic (As)can produce diabetic symptoms. In previous studies, the association between high-fat dietand arsenic in the incidence of diabetes was found, but the role of beta cells activity, livermitochondrial oxidative stress, and hepatic enzymes (leptin, adiponectin and beta amylase)was unclear. Thus, present study was co...

متن کامل

Evaluation of Diabetogenic Mechanism of High Fat Diet in Combination with Arsenic Exposure in Male Mice

Obesity is a main reason of type 2 diabetes and also chronic exposure to arsenic (As)can produce diabetic symptoms. In previous studies, the association between high-fat dietand arsenic in the incidence of diabetes was found, but the role of beta cells activity, livermitochondrial oxidative stress, and hepatic enzymes (leptin, adiponectin and beta amylase)was unclear. Thus, present study was co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Endocrine journal

دوره 62 7  شماره 

صفحات  -

تاریخ انتشار 2015